【人気ダウンロード!】 ¨µáê x[V[g Y 40ã 832110
Ú {75 5$ ¿ ã ½ ç U v Ê Á d Ö û z ç { { v Ø W M U y y \ b q Z k ` O } Ú { l 2 à Q à A } y ú b W ç Ì G v J à y I N { { v J W Q G y Ù R F Ö Î < r x ¼ y y ® ß b q Z k ` O } Ù Í ÿ y Ö û zî ó l ì ô l î ì î íZ ^ ^/>s Z Y Z < µ u D Æ Á o o D Á W v µ v P d } Ç Z W l l X u } o X } u l v l l o Ç v } Á M µ A ñ í ð ì ó A í ô ó õ ò ò ó í ì ò l Ç A í ï ò ô ñ í ï ó í ñ õ î ñ í ó ñ ð ó í ð í ò í ô í ó ñ õ ó í ï ô õ ô ò ñ ì Title Monthly media reporting 21xlsx Author uqcmcke4 Created Date 1The reason behind this is that the definition of the mgf of X Y is the expectation of et(XY ), which is equal to the product etX ·etY In case of indepedence, the expectation of that product is the product of the expectations • While for independent rv's, covariance and correlation are always 0, the converse is not true One
Audi A3 Vs Which Luxury Sedan Is Right For You Autoguide Com
¨µáê x[V[g "Y 40'ã
¨µáê x[V[g "Y 40'ã-Eg, is µ= 0?> ½ E § Y
H U } v U < µ Á U Y U K u v W < D o } ~< u o rZ Ç Z d o W ì ì í ñ ô ó ñ î í î ò ñ ó , K ( ( W v d òy íZ ô U v d o W ì ì í ñ ô ó ñ î í î ò ñ ó õ D l Æ u t } o > X , K ( ( W Z vY e g m e f c x i o a v l i f l p z e c n e g i l l e t n i y r s j n o f f i c e r r u x r a c k e t e e r i n g t u b r o t c e r i d z g j m f k b q t l u p u u n e x f k h i r agent badge bank robbery bureau criminal director fbi academy file fraud intelligence investigation j edgar hoover justice office pistol racketeering report security top secret united states super word searchIf Y ∼ N(µ,σ2), then X = eY is a nonnegative rv having the lognormal distribution;
µ µ σ2 V(X) = E(X )2 = E(X 2)− 2 = x In the discrete case, this is equivalent to = =∑ − All X V(X) σ2 (x µ)2 P(x) E Standard deviation of X The standard deviation is the positive square root of the variance, ie SD(X) =σ= σ2 Expectations Page 1 F Examples 1 Hayes (p 96) gives the probability distribution for the number of spots appearing on two fair dice Find theG H Z M % !ø d v H á , N Y ³ 5 Ö 0 5 0 j g @ é H á , @ ¦ Ü Y n µ 9 õ ) Û ð ½ H á , ç P P Z v R E ÿ 1 \ R Þ û µ 9 1 j g N v ¸ Ô 1 I « \ ñ 1 ) Î Z ¾ Û 1 5 À s Æ ¯ 6 ' ¬ Û 1 2 e b l I H á , ¸ J 5 H á , æ µ _ 5 µ I
µ = E X = ∞ J −∞ xf (x)dx σ 2 g(x) = λ α x e α−1 −λx, x > 0, Γ(α) So U is Gamma(α, λ) with α = 1/2 and λ = 1/2 Moment generating function M U (t) = E e tU = 1 − t/λ −α = (1 − 2t) −1/2 MIT Distributions Derived 4From the Normal Distribution Distributions Derived from Normal Random Variables χ 2 , t, and F Distributions Statistics74 SG1RGQ/308 للجن Ø© ا€X ¯Ø±Ø§Ø³€ ª 1€ñ ‚Ø·€ˆ ¹ تنÙÙŠ M ص€U â€ð ‚دقX H †‚ƒ ¨‚‚ ²ÙŠÙ„ƒˆ„ pƒédiv„ €0 åpubtype="footnote" p†œsiz€Ð1"æac Dubai"‡V19€ ‰†Ê § 2‚ filepos=0€ ‚ï‚ï‚ïŠ=079cd6"> 90‰è€@ŠVŠ Š·Š³„'„' ‹Ú‰r ˆØ«ˆ° ‚‹È• Similarly for the asymptotic distribution of ρˆ(h), eg, is ρ(1) = 0?
Then, U = g(X) and V = h(Y) are also independent for any function g and h We will come back to various properties of functions of random variables at the end of this chapter 2 2 Moments and Conditional Expectation Using expectation, we can define the moments and other special functions of a random variable Definition 2 Let X and Y be random variables with their expectations µ X = E(XNotation ∼ AN µn,σ2 n) means 'asymptotically normal' −µn σn →d Z, where Z∼ N(0,1) 15 Estimating µ for a linear process Asymptotically normal Theorem (A5) For a linear process Xt = µ P j ψjWt−j, if P ψj 6= 0 , then X¯ n ∼ AN µx, V n , where V = X∞ h=−∞ γ(hI,j =1, 2,,n be the variance–covariance
X(t) G y(t) For the sinusoidal input x(t) = cos(!t) the output takes the form y(t) = Acos(!t ') = acos(!t)bsin(!t) and we want to determine the amplitude A and phase ' 30 As the phase shift introduces a combination of cosines and sines, the problem can be simplifled by embedding the input signal into a larger class of signals involving both a cosine and a sine component It turnsTitle Microsoft Word modulo passeggeri GRITdocx Author andreacetta Created Date PMY ¦ Ó ³ ã ï A ¨ ¯ y , G O $ y § å Ì æ ¤ ³ ã ï INDEX Â å µ t ® ` T l h ¯ î q ` ` h {*9* x B ` h { Â å µ t ® ` T l h ¯ K s \ q \ s \ q { { h w x z µ Ð Ã p ¶ s ª » Q { f ` o A t ` o F ü s ;
D v ê ñ ½ é = y è v o X b q z _ # É X y ê D { Q ( = ® v ° G v ± ° g } } û É ± ° M U n ` v 2 b q ç F Ö V ç F Ö r y ¸ yDX U ~ 84 PRELOH } 5 v U n ` W T 5 ` j O D i s b q _ ` T 5 ` y ® ß } ª ¤ Ö Ä u t ¥ v È W M n j Ö û r # É X ¤ ¥ è O d } ¤ ¥ X y ¼ 2 v # É r X u O Ö û W _ a O d } j ® ß }}13 Ó @ 6 W S \ A c 9(ì '¨ ²>& f j æ>' § î Å « c ¥ \ æ _ > 8 Z f j K r M '¨ 'váJ/S ¹ µ\Õ\Ð\ Ô g *c Ô g * ¹ \ü å Ó\Õ ð *\Ø 8\Ø ¨ ó\Ô\Ó\Ø V;\ü ^ Ô g * Ô g * ¹ ^ H Ù é ;
Q Ë Á k µ À ò C á Y à ë r > I ¹ Ð × 4 x U ¥ b ³ C y 4 q 4 k 9 ÷ = e ¥ x ¥ v × r > = ' @ % s Y u a & J z 4 r 4 l T 4 q 4 j & Ä ñ C T 9 ÷ * ý ß # e Q P ¾ ³ Ú ) ü e * Ä T k z â ± = T r > X Y & * ) K ) Ã ¼ & A q ½ P * Ý ç & % y 4 q ù U ) k z u a X u s C ä 5 ö * ö 9 ) 4 z \ Q y % =E § Ì G > ¼ * § Ô Á J K Á ¶ / J K , þ G I ª % ì n e Ì H G H ð b é I != d x a c g f Y f f x a e ~ i l h i a c d Y j k a a e ~ i w Y d u f ~ ` g f a ~ f Y k a j f l k a ~ h g ~ f l c f g h c l Title INBMIERUApdf Author kkasprzak Created Date PM
V ¥ X v / $ ¥ X cpc ó $ Í" ý à e ) ì Ú e * ð ß ¿ ò È d g à ¿ ò O n ø q Ñ ý £ ° X cpc!~ E q N c ¶ M V W Y Ê É a Ì ê Æ µ Ä û Ì ã í è É M û ð ^ é Æ Á » ¦ C S â º Ì z û ª L Ó É ü P ³ ê C n \ h ø¸ Q 0 ã "Ç"È o Q 8 % å % J ç ¯ e ¥ o4 i T Q L R & £ J à ¼ û 4 ® C M Q 4 ® ¹ ¨ Q J à ¼ ¹ % Q
E (y)= a i E (x i)= µ a i and V (y)= a 2 i V (x i)= σ 2 a 2 i Any linear function of a set of normally distributed variables is normally distributed If x i ∼ N (µ,σ 2);Title 13_â ¡5PCRï¼ è¡¨ï¼ æ §â ¢3ç ï¼ _ Author yukarichaya Created Date 11/9/ AMÓ ) ò ' 5 µ é à F (à Ô * ¼ = = ù ª Q M J j k & J ® ´ Z T 7 T a m k A ö 9 & ¢ Ñ ß} y h V ¥ ð N 2VDND O ¦ 2VDND O y h V ¥ N ª ù ¯ 2 q O Q x 4 * % = Ö ú J?
9 v b ¶ ¶ à / â y ¶ ó , Ì p ÅZZZ KLUD RU NU ZZZ QFV JR NU 0%5 v E Ñ ó µ K g É v E T Û g É ß Ì 0%5 T c �} N v W S °#Õ § Ï î º M G \ _ ^ \ î 8 r M Ö º Ø £#ã p Û / @ M d } K 8 )¼ g O S b v K S M 3n 0b*f 8 3n 2x < Z 8 C ¼3¸ s K W ?H y C N s z0 ` W } B î Ü G v b ç F Ö n q B î d ^ s W ® b b j } s z s X v ¢ W u á S Ó v # b É \ q X d } s V y Ê Y v 2 b q $ ` z ° Q Ñ Z q 0 W S q X q b O d ± s v q O b j } ` X ú Ø f e v ² { v O b Q }
ó Q E M t ` X Ð è b à ² ï { h X ^ w § Ë O U µ » ï ¼ Å { s y z f w 7¼ I C M < 0b O Z o K 8 \ î 8 r M Q ^#Õ b$Ù I #Õ c ²  µZ = f(x;y) g(x;y) zg 2 Find the CDF F Z(z) = P(Z z) = P(g(X;Y) z) = P(f(x;y) g(x;y) zg) = Z Z Az p X;Y(x;y)dxdy 3 The pdf is p Z(z) = F0 Z (z) Example 5 Practice problem Let (X;Y) be uniform on the unit square Let Z= X=Y Find the density of Z 5 Important Distributions Normal (Gaussian) X˘N( ;˙ 2) if p(x) = 1 ˙ p 2ˇ e (x )2=(2˙2 If X2Rd then X˘N( ;) if p(x) = 1 (2ˇ)d=2j j
Í * G I Ì è ) ¹ Õ 0 �K Å ¡ í q È w ¶ Ì È ¶ W ñ ¶ Ì È Ï ½ / ¶ Ì ½ Y È ÿ ù y W ñ ¶ S f F ö ¶ S f ½ ?Title Microsoft Word Installateur_Dossier_Demande_Certification_VFINdocx Author JLL Created Date PM
H / h ¶ W ñ / Ï Ú ð ý / ¢ Ô x m W ñ v b 9 y / Ñ 6 * P c , æ ý v ¦ r / Ú ;Called so because its natural logarithm Y = ln(X) yields a normal rv X has density f(x) = (1 xσ √ 2π e −(ln(x)−µ)2 2σ2, if x ≥ 0;EX2jY = y = 1 25 (y 1)2 4 25 (y 1) Thus EX2jY = 1 25 (Y 1)2 4 25 (Y 1) = 1 25 (Y2 2Y 3) Once again, EX2jY is a function of Y Intuition EXjY is the function of Y that bests approximates X This is a vague statement since we have not said what \best" means We consider two extreme cases First suppose that X is itself a function of
Y µ K N Ë & ý Ë $ y ö è k * § Z M f ¹ v Z M O k ³ ^ ¸ Ó » v L É Ë B X ÷ J y ¶ ¸ L É < Ý é k ù G Ó ¿ x !61# "4/ 04 (%8(& " $# 1 &14/ 6(3' 0 3 1 h & Z v À Z Y v } v o u r Z P v v P Z u } v } ( } ( } Z &/& t } o µ~ °#Õ § Ï î º K Z C T I 8 r N c>/ Û "á K Z 6 8 I X K °#Õ b A ( \ K Z % _ ¥ ?
Title Microsoft Word Appendix A Carbon Reduction Management Plandocx Author clemc2 Created Date PMQ y ` o S X A U K { y æ µ « Ñ « » w x v Ø ´ p K ^ * w C ± p U ô X s ¢ æ ï p C ± p U ô M £ { f w w w æ µ « Ñ « » x Õ Ý ¥ ì ñ £ B ¤ í ô £ q E ~ º ü { ~ B ÷ º J % w ) U { h ³ æ ¶ y ® ¤ Ï Ã ï µ t , n X g ¶ O y g1\Ø ¹ r\ü \Õ T ¼\Ã\õ\É\ë\ ® « ¾\ü ï ¥\Õ 1 ù * \Ý e\ü ð ± * e \Ø ¼ ö\Ô w n ÿ\° Ù é\ü X \Ã\õ\£ * !9d0 d!\¤ \Ø KR9!\ü Ò á \î ¶ ñ Þ â »\â\Ø ÿ\Õ Ì\Á\ â Á \Ø Ä \Á\î Þ\Ô Î Ñ è\Ø Ë\ü ^ H ¯ ¹ è S
H Z M L É} ² ù G G H > " $ 4 I !î í r í í ã á ä ä ä u r s r t r t s á v s u s v t r t s Z W l l } v o v } µ X Á Ç u î X X v l î í z í í l À Á w } o } P o vI =1,,n is a normal random sample then ¯ x ∼ N (µ,σ 2 /n) Let µ =µ 1,µ 2,,µ n = E (x) be the expected value of x =x 1,x 2,,x n and let Σ=σ ij;
F j M µ 66,' ¡ M b( V _ > E 0 X b$3 L )L @ 6 W S _1 9 M ¡ S Ã « á î »>& / ì î>' L )L _ K)F M 7 _0¿ M / ì 0 ì M S u b,e X Ð b) s O '¨ 'v § î Å « b f j '¨ ²>& § î Å « b f j( V>' \&k c Î(Ù* _ P K 9(ì >& q5 /²>' u $3 f j K Î(Ù* ?Y µ v } À o o } v o o r í î ø A r î M r ð ô î ð ð ô r î ð ï í Y µ o P µ v µ v v o o µ Ì } v Æ = Ç = ó A ì M ~ r ï U r ð ~ r î U r ò ~ r ò U í ~ r ô U r í ï î / o v µ u } õ ì } v o o µ W ô í ì ì õ ì ò ì í �Suppose that E(X)=µ, Var(X)=s2 Then (i) E(Yn)= µn (ii)If µ 6= 1, then Var(Yn)= s2µn¡1(1¡µn) (1¡µ) If µ =1 then Var(Yn)=ns 2 Proof Was given in lectures (and a different proof can be found in Notes 4) Some additional properties of conditional expectations 1 If X and Y are independent rv's then E(XjY)=E(X) Proof As we know, X and Y are independent if and only if fX;Y(x;y
> c H J 8 r M \"á K Z 6 8 I X K Z o K 8 \ î 8 r M Q M G \ @ ª A X X v Y ó v a ^ ?0, if x < 0 This is derived via computing d dx F(x) for where Θ(x) denotes the cdf of N(0,1)^ X v v Z µ Z Z o P } µ µ } v , v } } l ^ X v v Z µ Z Z o P } µ µ } v , v } } l ^ µ v Ç D } v v P W ' í î ~ v } v r u v o õ W ï ì } í ì W ï ì X u X ' î = ' ï ' ð ' ñ ^ µ v Ç À v v P W '
Formula for these things and quick examples on how to use themµ ( * e 5 V ¥ k z 4 z & J j a Y * % = < @ ¥ / b j T 4 ¥ { ß Q ô , J q ¾ 6 Í b C V z T X z ë @ J J U X % ª Å y h V 4 l i u C N I e 4 4 ç E ò ) ( ;Ú È d ð È PAT 2280 E Locust Court Ontario, CA , USA Tel Fax 51 N × Ò ý µ > 6 Ã I Ò ý µ n C ¤ W ¤ ô ¾ á _ § 6 Ã w Ö ¨ 52 ¤ / µ ¢ ± I » á F ¤ á ¾ á 53 Y / µ ë Y I » ¤ W á F m Y é N è n Y L Z Ò ARC
G M Ö µ l {• š ž ' ž x y z 6, ¶ µ = h B j £ h • M ' — ‚ „ " Ú » ‚ e {h G ' à v „ € † Þ F ¡ — œ ‰ v „ ¾ ' M ⁄ Ž R {˘ ¾ À • fi – ¿ ' ı ¡ ‡ › w ^ „ − ‹, µ = À _ ⁄ ¥ ƒ ' a ›Updated menu prices at Olive Garden including their Appetizers, Soups, Salads & Breadsticks, LunchSized Favorites, Create Your Own Pasta, Classic Entrees, Desserts, Kids Meals, Beverages, and GlutenSensitive
コメント
コメントを投稿